
Sequential short-time propagation of quantum–classical dynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 9069

(http://iopscience.iop.org/0953-8984/14/40/301)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 18/05/2010 at 15:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 9069–9076 PII: S0953-8984(02)38176-1

Sequential short-time propagation of
quantum–classical dynamics

Donal MacKernan1, Raymond Kapral2 and Giovanni Ciccotti3

1 CECAM, Ecole Normale Superieure de Lyon, 46 Allee d’Italie, 69364 Lyon Cedex 07, France
2 Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto,
Ont., Canada M5S 3H6
3 INFM and Dipartimento di Fisica, Università ‘La Sapienza’, Piazzale Aldo Moro 2, 00185
Roma, Italy

Received 14 June 2002
Published 27 September 2002
Online at stacks.iop.org/JPhysCM/14/9069

Abstract
An algorithm for the simulation of quantum–classical dynamics is presented.
Quantum–classical evolution is effected by a propagator exp(iL̂t) involving
the quantum classical Liouville operator L̂ that describes the evolution of a
quantum subsystem coupled to a classical bath. Such a mixed description
provides a means to study the dynamics of complex many-body systems where
certain degrees of freedom are treated quantum mechanically. The algorithm is
constructed by decomposing the time interval t into small segments of length �t
and successively applying the propagator in the short time segments to obtain
the evolution for long times. The algorithm is shown to be a discretization of
the iterated Dyson form of the propagator whose direct solution is vexatious.
The sequential short-time propagation algorithm is applied to the spin-boson
model for a range of values of the Kondo parameter and shown to be effective.

1. Introduction

The dynamics of a many-body system may often be described in terms of mixed quantum–
classical dynamics: certain relevant degrees of freedom which are treated quantum
mechanically are coupled to a classical environment [1–3]. Such a description is especially
useful for the study of the quantum dynamics of protonic and electronic degrees of freedom
in condensed phase systems since the large number of environmental phase-space coordinates
can be treated by classical mechanics. Although a mixed quantum–classical description is a
major simplification of full quantum dynamics,quantum–classical dynamics is not simple since
coupling between the quantum and classical subsystems precludes a Newtonian description
of the bath [4]. Consequently, the development of methods to describe and simulate such
quantum–classical dynamics is a problem of considerable interest. A number of approximate
approaches has been developed in the past to follow the joint evolution of the classical and
quantum subsystems [5–13]. The main question to be answered using these approaches is how
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to compute the evolution of the classical part when quantum transitions occur. Another issue
which must be addressed is how to compute the statistical properties of a quantum–classical
system. In a recent series of papers we showed how one may formulate both the dynamics and
statistical mechanics of quantum–classical systems by using a partial Wigner representation
and taking the limit of a small mass ratio of the masses of the particles belonging to the quantum
and classical subsystems [4, 12–14].

In our formulation of quantum–classical dynamics [4], observables or dynamical variables
B̂W (R, P) are operators in the quantum degrees of freedom and functions of the classical phase-
space coordinates (R, P) of the bath. Dynamical variables satisfy the equation of motion

d B̂W (t)

dt
= iL̂B̂W (t), (1)

where iL̂· = (i/h̄)[ĤW , ·] − (1/2)({ĤW , ·} − {·, ĤW }) is the quantum–classical Liouville
operator, with ĤW (R, P) = P2/2M + p̂2/2m + V̂W (q̂, R) ≡ P2/2M + ĥW (R) the partially
Wigner transformed [15] Hamiltonian of the system. The quantum subsystem has position and
momentum operators q̂ and p̂, respectively. The potential energy operator V̂W (q̂, R) accounts
for interactions among all particles, both quantum and classical. One can see that this evolution
equation reduces to the familiar Heisenberg equation of motion if the bath is absent and to
the classical Newtonian equations of motion (in Liouville form) if the quantum subsystem is
absent. Due to the mutual interaction between these two subsystems, the evolution of the entire
quantum–classical system given by equation (1) is more complex than the classical limit and,
formally, more involved than quantum evolution. While the formal solution of this equation
of motion is easily written as B̂W (t) = exp (iL̂t)B̂W (0), the problem is to design methods to
effectively simulate the evolution for realistic many-body systems.

Quantum–classical dynamics described by the Liouville operator iL̂ may be formulated in
terms of an ensemble of surface-hopping trajectories. For this purpose, it is convenient to work
in a basis of adiabatic eigenfunctions |α; R〉 determined from the solution of the eigenvalue
problem, ĥW (R)|α; R〉 = Eα(R)|α; R〉. In this basis the quantum–classical Liouville operator
has matrix elements [4]

iLαα′ ,ββ ′ = (iωαα′ + iLαα′ )δαβδα′β ′ − Jαα′ ,ββ ′ ≡ iL0
αα′δαβδα′β ′ − Jαα′,ββ ′ , (2)

where ωαα′ = (Eα −Eα′)/h̄ is a frequency determined by the difference in energies of adiabatic
states and iLαα′ is the Liouville operator that describes classical evolution subjected to the
mean of the Hellmann–Feynman forces for adiabatic states α and α′. The operator Jαα′,ββ ′ is
responsible for non-adiabatic transitions and corresponding variations with respect to the bath
momentum, and has the form

Jαα′ ,ββ ′ = − P

M
dαβ

(
1 +

1

2
Sαβ

∂

∂ P

)
δα′β ′ − P

M
d∗

α′β ′

(
1 +

1

2
S∗

α′β ′
∂

∂ P

)
δαβ, (3)

where Sαβ = (Eα − Eβ)dαβ( P
M dαβ)−1. A solution in terms of an ensemble of surface-hopping

trajectories is easily constructed by writing the evolution operator as an integral equation of
the Dyson form:

(eiL̂t )αα′,ββ ′ = eiL0
αα′ tδαβδα′β ′ −

∑
νν′

∫ t

0
dt ′ eiL0

αα′ t ′
Jαα′νν′ (eiL̂(t−t ′))νν′ ,ββ ′ , (4)

where

eiL0
αα′ t = ei

∫ t
0 dt ′ ωαα′ (Rαα′,t )eiLαα′ t ≡ Wαα′(0, t)eiLαα′ t . (5)

The solution of the integral equation may be found by iteration to yield a representation of the
dynamics as a sequence of terms involving increasing numbers of non-adiabatic transitions.
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A straightforward evaluation of the series solution may be obtained by a hybrid Monte Carlo–
molecular dynamics (MC–MD) scheme where the possible quantum transitions, their number
and the times at which they occur are sampled from suitable distributions [4, 12, 13]. While
the iterated integral solution of the propagator provides an exact representation of quantum–
classical dynamics in terms of surface-hopping trajectories and the hybrid MC–MD scheme
has been implemented successfully for short times, it will fail for long times. Consequently,
there is a need to develop more effective and efficient algorithms. In this paper we explore an
alternative hybrid method to obtain a solution to the quantum–classical evolution equations
which is more efficient and easier to implement than the hybrid scheme used in our earlier
studies.

In section 2 we show how the quantum–classical propagator can be written in a sequence
of short-time propagators. The evolution in the short time segments is given in terms of a
discretization of the first-order truncation of the Dyson form of the propagator. We show that
in the limit where the number of segments N goes to infinity and the segment length �t goes
to zero, with N �t = t , we recover the full iterated form of the Dyson quantum–classical
propagator for the time interval t . The section also contains a description of how the algorithm
is implemented. Section 3 presents the results of simulations using this algorithm for the
spin-boson system. Since exact numerical results are available for this model and quantum–
classical simulations of the iterated full Dyson propagator have been carried out, we are able
to assess the utility of the algorithm. The conclusions of the paper are presented in section 4.

2. Sequential short-time propagation

The simulation scheme that we develop in this paper utilizes the fact that the quantum–classical
Liouville operator L̂ is time independent, so the evolution operator can be simply decomposed
into a composition of evolution operators in time segments of arbitrary length. The evolution
of a dynamical variable (or the density matrix) over any time interval can then be obtained by
the successive application of evolution operators in small time intervals.

In order to present this method in compact form we adopt a notation for pairs of quantum
states introduced earlier [13]. We associate an index s = αN + α′ with the pair (αα′), where
0 � α, α′ < N for an N -state quantum subsystem. Consider dividing the time interval t into
N segments of lengths �t j such that the j th segment t j − t j−1 = �t j . We may then write

(eiLt )s0sN =
∑

s1s2···sN−1

N∏
j=1

(eiL(t j −t j−1))s j−1s j . (6)

Using this compact notation, the operator identity in equation (4),

(eiL̂(t j −t j−1))s j−1s j = eiL0
s j−1

(t j −t j−1)δs j−1s j −
∑

sl

∫ t j

t j−1

dτ1 eiL0
s j

(τ1−t j−1) Js j−1sl (e
iL̂(t j −τ1))sl s j , (7)

holds in every time interval.
Various levels of approximation can be constructed by truncating the operator identity

within each time slice. Here we suppose that the time intervals t j − t j−1 = �t are sufficiently
small that one may keep only the first term in the series solution obtained by iterating the
integral Dyson equation (7). We have

(eiL̂(t j −t j−1))s j−1s j = e
iL0

s j−1
(t j −t j−1)

δs j s j−1 −
∫ t j

t j−1

dτ1 e
iL0

s j−1
(τ1−t j−1) Js j−1s j e

iL0
s j

(t j −τ1). (8)
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Since the time interval �t is assumed to be sufficiently small, we can take a one-point
approximation to the time integral by choosing a point t ′ in �t :

(eiL̂(t j −t j−1))s j−1s j ≈ e
iL0

s j−1
(t ′−t j−1)

(δs j s j−1 − �t Js j−1s j )e
iL0

s j−1
(t j −t ′)

. (9)

In particular, by way of illustration, if we choose t ′ = t j we obtain

(eiL̂(t j −t j−1))s j−1s j ≈ eiL0
s j−1

(t j −t j−1)(δs j s j−1 − �t Js j−1s j )

= Ws j−1(t j−1, t j )e
iLs j−1 (t j −t j−1)(δs j s j−1 − �t Js j−1s j ). (10)

Thus, at the end of each small segment, the system either may remain in the same pair of
adiabatic states or make a transition to a new pair of states. Substituting this expression into
equation (6), we obtain

(eiLt )s0sN ≈
∑

s1s2···sN−1

N∏
j=1

e
iL0

s j−1
(t j −t j−1)

(δs j s j−1 − �t Js j−1s j ). (11)

Here and in the following t j = j �t and tN = t . In the limit N → ∞, �t → 0 with N �t = t ,
we recover the iterated form of the Dyson integral propagator. This may be seen by writing
equation (11) explicitly to obtain

(eiLt )s0sN = eiL0
s0

t
δs0sN +

N∑
n=1

(−1)n
∑

s1,s2,...,sn−1

N−n+1∑
k1=1

N−n+2∑
k2=k1+1

· · ·
N∑

kn=kn−1 +1

eiL0
s0

(tk1 −t0)

× (�t Js0s1)e
iL0

s1
(tk2 −tk1 )

(�t Js1s2) · · · (�t Jsn−1sN )eiL0
sN

(t−tkn )
. (12)

In this equation no sum over the si -indices is to be taken for n = 1. By inspection, it is evident
that in the limit given above, equation (12) is the discretized version of the iterated form of the
Dyson expression given in equation (7).

Now we can consider the calculation of the expectation value of an observable
ÔW (R, P, t):

O(t) =
∑

s0

∫
dR dP Os0

W (R, P, t)ρ
s ′

0
W (R, P)

=
∑
s0,sN

∫
dR dP [(eiLt )s0sN OsN

W (R, P)]ρ
s ′

0
W (R, P)

=
∑

s0,s1,...,sN

∫
dR dP

[ N∏
j=1

(eiL(t j −t j−1))s j−1s j

]
OsN

W (R, P)ρ
s ′

0
W (R, P), (13)

where s′
0 is obtained from s0 by the interchange α � α′ and ρ

s ′
0

W (R, P) is the initial value of
the density matrix. The last line of equation (13) was obtained by inserting for the evolution
operator the sequential propagation expression in equation (11).

To carry out the calculation, the multi-dimensional sums over quantum indices and
integrals over phase-space variables may be evaluated through Monte Carlo sampling. We
begin by choosing s0 from the set S0 of permitted values for an N -state system and note the

weight ws0 = N 2. Next, we choose (R, P) from |ρs ′
0

W (R, P)| and note the sign, σ(ρ), of

ρ
s ′

0
W (R, P). To avoid the branching of trajectories induced by the successive application of the

off-diagonal operator J , we utilize the momentum jump approximation introduced earlier [4].
To propagate the dynamics through one time interval, we update the initial positions and

momenta, the phase factor and the observable at time �t by applying eiLs0 �t . Then, given s0,
we choose s1 uniformly from the set S1 of allowed final states. The weight ws0s1 associated
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with the final state is the number of elements of the set N(S1). Having chosen s1 we can
compute the non-adiabatic coupling matrix element ds0,s1 at the updated position.

To proceed, define the probability, �, of a non-adiabatic transition:

� =
∣∣∣∣ PsI−1,�t

M
dsI−1sI (RsI−1,�t )

∣∣∣∣�t (1+| PsI−1,�t

M
dsI−1sI (RsI−1,�t )|�t)−1, (14)

and sample from it:

(a) If the jump is rejected, then

Os0
W (R, P,�t) = Ws0(Rs0,�t ,�t)Os0

W (Rs0,�t , Ps0,�t )
1

1 − �
. (15)

(b) If it is accepted, then, using the momentum jump approximation, we translate the
momentum Ps0,�t to (to avoid numerical instabilities associated with the momentum jump
approximation, we have introduced an upper bound on the acceptable values of S, such
that if |S| > Sc the contribution of the trajectory to O(t) at that and all subsequent time
slices is discarded)

Ps1,�t = Ps0,�t + 1
2 Ss0s1

and we write

Os1
W (R, P,�t) = Ws0(Rs0,�t )Os0

W (Rs0,�t , Ps1,�t )
Ps0,�t

M
ds0s1(Rs0,�t )

1

�
ws0s1 . (16)

This procedure may now be reapplied to obtain the observable O
s j

W (R, P, j �t) for
subsequent time slices until the N th slice is reached. Finally, multiplying the observable by
ws0 and the sign of the density matrix, and averaging the resulting quantity over the sampled
initial conditions, we obtain the statistical average.

3. Results for the spin-boson model

We have applied this scheme to evaluate the decay of the population in the spin-boson
model [16, 17], a system for which exact results are available [18] and which has been
previously simulated using the quantum–classical Liouville equation and surface-hopping
methods [13]. This model describes a two-level system, with states {|↑〉, |↓〉}, bilinearly
coupled to a harmonic bath of N oscillators with masses M j and frequencies ω j . The partially
Wigner transformed spin-boson Hamiltonian that enters the quantum–classical Liouville
equation is

ĤW = −h̄�σ̂x +
N∑

j=1

(
Pj

2

2M j
+

1

2
M j ω j

2 R j
2 − c j R j σ̂z

)
, (17)

which depends on the classical phase-space coordinates (R, P) and the spin degrees of
freedom. The σi are the Pauli spin matrices. The values of the parameters in this N-
oscillator spin-boson model were taken from Makri and Thompson [18],c j = (ξ h̄ω0 M j )

1/2ω j ,
ω j = −ωc ln(1 − jω0/ωc) where ω0 = ωc(1 − exp(−ωmax/ωc))/N and j = 1, . . . , N .
This parameter choice models a bath with ohmic spectral density characterized by the Kondo
parameter ξ and frequency ωc. The parameter ωmax is a cut-off frequency. Further details
of the model, along with the forms of the adiabatic states and non-adiabatic coupling matrix
elements, can be found in [13].

The partially Wigner transformed density matrix is taken to be uncorrelated with the
subsystem in state |↑〉 and with the bath in internal thermal equilibrium:
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)

Figure 1. The time dependence of O(t) for ξ = 0.007, β = 0.3/(h̄ωc). Comparison of sequential
short-time propagation (�, broken curve), full Dyson solution (
), influence functional theory (•)
and adiabatic dynamics (solid curve).

ρ̂W (R, P, 0) = ρ̂s(0)ρbW (R, P), (18)

where, in dimensionless variables (R′
j = (M jωc/h̄)1/2 R j , P ′

j = (h̄M j ωc)
−1/2 Pj ),

ρbW (R′, P ′) =
N∏

i=1

tanh(βωi/2)

π
exp

[
−2 tanh(βωi/2)

ωi

(
P ′2

i

2
+

ω2
i R′2

i

2

)]
. (19)

In order to compare our results, using the sequential short-time propagator, with earlier
ones obtained using the exact Dyson propagator we focus our attention on the computation of
the expectation value of the observable:

Ô = σ̂z =
(

1 0
0 −1

)
, (20)

whose average is the population difference in the quantum subsystem.
The system parameters used in this study were � = ωc/3 and ωmax = 3ωc, while

the Kondo parameter and reduced temperature took the two sets of values (ξ = 0.007,
β = 0.3/(h̄ωc)) and (ξ = 0.1, β = 3.0/(h̄ωc)). The harmonic bath consisted of ten oscillators.
This choice of parameters allows one to explore non-adiabatic regimes at low and relatively
high temperatures where the bath can be expected to become more ‘classical’, and weak to
moderate coupling, where the dissipative effects of the bath become more evident.

Figure 1 plots the average value of the population difference of the two-state quantum
subsystem versus time for ξ = 0.007 and β = 0.3/(h̄ωc). The sequential short-time
propagation results are in very good agreement with the numerically exact results of Makri
and Thompson [18] and with our earlier full Dyson solution. In contrast with a simple
implementation of the full Dyson algorithm, the present scheme yields the entire time evolution
of the observable with a single surface-hopping trajectory. The figure also presents the adiabatic
evolution. Even for this small coupling strength one sees noticeable deviations from the exact
quantum evolution, reflecting the importance of the non-adiabatic scheme for this problem.

An analogous set of results for a somewhat stronger coupling to the bath (ξ = 0.1,
β = 3.0/(h̄ωc)) is shown in figure 2. Equally good agreement is obtained in the time range
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t
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)

Figure 2. The time dependence of O(t) for ξ = 0.1, β = 3/(h̄ωc). Comparison of sequential
short-time propagation (�, broken curve), full Dyson solution (
), influence functional theory (•)
and adiabatic dynamics (solid curve).

explored. In this case the stronger coupling to the bath manifests itself in the more non-
harmonic character of the oscillations of the mean value of the observable and its more rapid
decay to equilibrium. Note also that the adiabatic approximation to the dynamics fails badly
in this case.

4. Conclusions

The short-time sequential propagation algorithm for the simulation of quantum–classical
dynamics has been shown to provide a relatively simple scheme for the computation of
dynamical properties. If this method is used in conjunction with the momentum jump
approximation, once an initial phase-space point and pair of quantum states are chosen, each
realization of the dynamics is a single stochastic trajectory. This trajectory comprises classical
evolution segments punctuated by quantum transitions that change one of the quantum states in
the pair and produce momentum changes in the classical environment. The classical evolution
takes place on either single adiabatic potential energy surfaces if a diagonal pair of states is
chosen in the quantum transition or on the mean of two adiabatic surfaces if the states in the
chosen pair are distinct. The phase-space coordinates and quantum states may be recorded
at times separated by intervals �t along the trajectory. Once this trajectory is computed one
may assemble all the information needed to compute the observable at all intermediate times
between 0 and t in the history as described in the section devoted to the algorithm. In particular,
the phase factors Ws j enter the computation for segments of the trajectory involving distinct
pairs of states and reflect the quantum coherence that exists in the system.

The results of the calculations on the spin-boson model demonstrated that the algorithm
can be used to simulate the quantum–classical dynamics of systems with many classical
degrees of freedom. Since the complexity of the classical system simply determines the
nature of the classical evolution segments, and one may exploit well-developed molecular
dynamics methods to carry out these portions of the dynamics, the simplifications provided in
the quantum–classical framework by the short-time sequential algorithm should allow one to
treat realistic many-body systems of physical interest.
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